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Abstract. We generalize the nonlinear sigma model treatment of quantum spin chains to cases including
ferromagnetic bonds. When these bonds are strong enough, the classical ground state is no longer the
standard Néel order and we present an extension of the known formalism to deal with this situation.
We study the alternating ferromagnetic-antiferromagnetic spin chain introduced by Hida. The smooth
crossover between decoupled dimers and the Haldane phase is semi-quantitatively reproduced. We study
also a spin ladder with diagonal exchange couplings that interpolates between the gapped phase of the
two-leg spin ladder and the Haldane phase. Here again we show that there is a good agreement between
DMRG data and our analytical results.

PACS. 75.10.Jm Quantized spin models – 75.20.Hr Local moment in compounds and alloys; Kondo effect,
valence fluctuations, heavy fermions

1 Introduction

One-dimensional quantum spin systems exhibit remark-
able physical properties. One of the most interesting case
is the s = 1 antiferromagnetic Heisenberg spin chain.
Contrary to the s = 1/2 case, this system has a gap
as predicted by Haldane [1] and a finite spin correlation
length. It is an example of a system which is disordered at
zero temperature due to quantum fluctuations. The orig-
inal conjecture has been checked experimentally [2], nu-
merically [3] as well as analytically [4–6]. Although the
ground state is disordered in the sense that spin corre-
lations decay exponentially, there is a hidden topological
order [7,8] that is revealed in the bulk of the chain only by
nonlocal observables or by ground state degeneracy in an
open geometry. This hidden order is most clearly seen in
the VBS wave function which is an approximate ground
state of the spin-1 chain [5]. To construct this wave func-
tion one has first to write each spin s = 1 as a triplet of
two fictitious spins s = 1/2. Then one couples nearest-
neighbor spins s = 1/2 into singlets. This leads to a func-
tion which is obviously singlet and translation invariant. It
is an excellent approximation of the true ground state [9].
The perfect crystalline pattern of singlets is the hidden
order. Hida has given an appealing picture of the Haldane
gap and the VBS ground state by considering an alter-
nating ferro-antiferromagnetic s = 1/2 chain [10]. The
Hamiltonian is given by (see Fig. 1):

H = JAF

∑
n

S2n · S2n+1 + JF

∑
n

S2n+1 · S2n+2. (1.1)
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Fig. 1. The alternating ferro-antiferromagnetic spin chain.
The coupling γ is the strength of the ferromagnetic bonds.
The unit cell needed to construct a NLσM contains four spins.

Here Si are s = 1/2 spin operators, JAF is positive and JF

is negative. In what follows, we set JAF = 1 and JF = −γ.
The family of systems defined by equation (1.1) has sim-
ple limiting cases. For γ = 0 we have a set of decoupled
pairs of spins that have a trivial ground state: all pairs are
locked in singlets. When γ →∞, the s = 1/2 are coupled
by pairs into s = 1 states and we get a chain of spins s = 1.
Hida has studied numerically the gap of the system as a
function of γ. He has used Lanczos diagonalization tech-
niques to evaluate the gap and he showed that there is no
phase transition as a function of γ. As a consequence, the
Haldane gap of the limit γ →∞ is continuously connected
to the trivial gap of the decoupled limit γ = 0. The exci-
tation spectrum also evolves smoothly. So the alternating
chain offers a simple physical picture of both the Haldane
gap and the hidden topological order.

There is another approach to quantum spin chains
which is the continuum field theory known as the nonlinear
σ model (NLσM). Introduced originally by Haldane [1],
this field theory includes a topological term [11] θ = 2πs
for a spin-s chain. While this term can be discarded when
s is integer, it is responsible for masslessness when θ = π
(mod 2π), i.e. for half-integer spin chain. This approach
has been recently applied [12–14] to spin ladders where
there is also a parity effect which is given by the num-
ber of legs of the ladder. Indeed, spin ladders with even
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number of legs are generically gapped while odd-numbered
ones are gapless. This effect can be explained in the NLσM
framework with a topological term which is θ = 2πs× nl

where nl is the number of legs. It is also of great interest
to consider generalized spin ladders with various types of
bond alternation and/or additional exchange couplings.
For example, a spin ladder with a diagonal coupling in-
terpolates smoothly [15] between the s = 1 chain and
the two-leg spin ladder. Previous investigations [16–21] of
these more general situations have used the NLσM but
with the impossibility to treat cases including ferro bonds
as in the ferro-antiferro chain introduced by Hida.

In this work, we present a generalized NLσM that in-
cludes additional massive modes and we show that this
model is able to reproduce the s = 1 limit of alternating
chain of Hida. We discuss the construction of this new
effective theory in the path-integral framework although
it could also be done in the Hamiltonian formalism with
identical results.

In Section 2 we treat the alternating ferro-
antiferromagnetic spin chain. From the spin-wave spec-
trum, we motivate the NLσM approach and obtain an
approximate spin gap formula for the whole range of γ.
In Section 3, we apply the same formalism to White’s
mapping from the spin-1 chain to the antiferromagnetic
two-leg ladder. Section 4 contains our conclusions.

2 The alternating ferro-antiferromagnetic
spin chain

2.1 Build-up of an effective sigma model

A NLσM for a spin chain is a non perturbative field the-
ory which is built on the lowest energy modes of the
classical theory of the chain. For the alternating chain
equation (1.1) the dispersion relation of the spin waves is
given by:

ω(k) = s

√
2γ(1 + γ)± 2γ

√
(1 + γ)2 − sin2 k. (2.1)

The two lowest positive excitations correspond to mo-
menta kc = 0 and kc = π. Linearizing the dispersion
relation around kc, we obtain for those modes the linear
relation ω = s

√
γ

1+γ |k − kc|. Hence the velocity of those

spin waves is v = s
√
γ/1 + γ. They stand for the two

Goldstone modes of the (classically) broken O(3) symme-
try. We will ground our NLσM on them, assuming they
are slowly varying modes, in a theory where the rota-
tional symmetry is unbroken. We also reasonably assume
that the massive modes do not interfere significantly with
the Goldstone modes, their energy being of the order of
2s
√
γ(1 + γ).

Hida devised his alternating chain because of its ap-
pealing limit when the ferromagnetic exchange is getting
to infinity. The limiting chain is an antiferromagnetic spin-
1 chain with coupling JAF/4. In this limit the ferromag-
netic pairs are in a triplet state. Because of rotation in-
variance, the limiting Hamiltonian can be written as an

effective spin-1 chain. The couplings can only be quadratic
Si ·Sj or quartic (Si ·Sj)2. The quartic term is excluded in
this limit because it corresponds to second order pertur-
bation theory in γ−1. The prefactor in front of the spin-1
coupling can be determined thanks to the calculation of
a single matrix element, which is easily done on the all-
spin-up configuration and yields Jeff = JAF/4.

If we consider a spin-s antiferromagnetic spin chain
with s even, characterized by the Hamiltonian H =∑
i JAFSi · Si+1, this spin chain can be mapped onto a

NLσM. The mapping can be performed within the La-
grangian formalism if one uses coherent states represen-
tation for the spin operators. The discrete action is made
of the exchange interaction terms and of the Berry phases
W [ni] of the spin vector field ni. The coherent state vec-
tors ni are expanded according to n2i = l2i−sΦ2i,n2i+1 =
l2i+1 + sΦ2i+1. The vector field Φi (local staggered mag-
netization) is unitary and the field li satisfies Φi · li = 0.
Those fields can be hinted at from the study of modes in
the semi-classical spin chain. Now suppose li is of order
of magnitude a, the lattice spacing. This representation of
the spin chain allows for a continuous form for the action
S, which depends on the fields l(x, t) and Φ(x, t). Because
we supposed l is of magnitude a, the action is quadratic in
l so that the field can be integrated out. Now recall that
the spin magnitude s is even. Then the Berry phases of the
spin coherent states partially gather to form a topological
term θ = 2πs, the effect of which is null in the action.

Let us consider now the alternating spin chain. The
main difficulty we encounter in trying to represent this
chain is the fact that it is inhomogeneous, so that writing
an adequate continuous action out of the discrete Hamil-
tonian is not a trivial task. Indeed, the fundamental mi-
croscopic structure is a block of two spins (call them 1 and
2, say). It will turn out that it is better to choose pairs of
spins naturally coupled by the ferromagnetic link, prefer-
ably to the antiferromagnetic one. This choice corresponds
to the idea of pairing those spins s = 1/2 to make them an
effective spin-1 in the limit where γ goes to infinity (large
ferromagnetic coupling).

The most rigorous way we could imagine to handle the
continuous limit would be to introduce two coherent states
vector fields, one for each of the two sites. Unfortunately,
this would yield an intricate action, due to the appearance
of several equally contributing massive modes. In particu-
lar, the Berry phases contribution of those coherent states
would not be any more easily recognizable as a topological
invariant.

Now consider a two-block structure, made of the four
spins S1

2i,S
2
2i,S

1
2i+1, and S2

2i+1. The pairs S1
2i,S

1
2i+1 and

S2
2i,S

2
2i+1 are appropriate candidates to generate two

NLσM models. A first (incorrect) idea, sustained by our
wish to go to the continuous limit, is to assume that they
form the same NLσM. This assumption would be correct
in the limiting case γ goes to infinity, but far too crude in
any other case.

To cure this, at least partially, we add one extra field
∆i to the two semi-classical NLσM slow modes li and
Φi. It represents small quantum fluctuations, remnants of
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massive modes, that may bring about effective corrections
to the NLσM action.

Accordingly, the coherent states fields are decom-
posed as: 

n1
2i = l2i − sΦ2i + a∆2i

n2
2i = l2i − sΦ2i − a∆2i

n1
2i+1 = l2i+1 + sΦ2i+1 − a∆2i+1

n2
2i+1 = l2i+1 + sΦ2i+1 + a∆2i+1

(2.2)

Here s is the spin magnitude and a is the lattice spacing.
Note that this lattice spacing is of the length of a two-spin
block. The amplitude of the quantum fluctuation is of the
order of this lattice spacing. This assumption make the
problem a tractable one, since we do not need to consider
derivatives of the field ∆i when expanding the action. We
enforce it by setting a as a prefactor of the fluctuating
field. Note that the standard momentum field l is implic-
itly assumed to be of order a.

We intentionally chose only one fluctuation field, con-
trary to Sénéchal’s scheme [14] where the coherent state
fields are decomposed on as many possible independent
fluctuation fields. We now justify the choice of this partic-
ular field by means of a path integral reasoning.

We suspect that some highly fluctuating paths are con-
tributing in the action. Indeed, exchange couplings vary
on the microscopic scale by a macroscopic amount, and
do not behave smoothly with respect to the position. As a
consequence some irregular paths might be energetically
favorable. Yet a straightforward continuous limit of the
action would not retain them since they are not spatially
regular. That is why we should enforce some possible (non
derivable) contributing fluctuation in the paths. Now let
us see why we chose this particular field ∆i. The fields
li and Φi parametrize the variation of the path between
the two-block pattern (2i, 2i+ 1), spatially indexed by i.
So we need one field to represent the variation inside the
two-spin blocks. In the block 2i, the coherent state vec-
tors n1

2i and n2
2i differ by an amount of 2a∆i. Since the

microscopic pattern is a two-spin block, we have then no
choice than to make the coherent state vectors n1

2i+1 and
n2

2i+1 differ by an amount of −2a∆i, because the varia-
tion on the scale of the two-spin block are already taken
into account within the NLσM fields. And this exhausts
infinitesimal contributing fluctuations of the path.

The action of the spin chain we get through the coher-
ent states representation is of the form

S =
∫

dt
∑
i

s2n2i · n2i+1

− γ
∑
i

s2n2i+1 · n2i+2 +
∑
i

s ·W [ni]. (2.3)

One can expand the coupling terms in the action, then
goes to the continuous limit, which yields

Sc =
∫

dt
dx
a

[
−4a2(1 + γ)∆2

−4l2 + 4a2s∂xΦ ·∆− a2s2(∂xΦ)2
]
. (2.4)

We emphasize the fact that the ferromagnetic exchange
terms are of course expanded from its aligned configu-
ration contrary to the antiferromagnetic exchange terms
which are expanded from the Néel order. That is the rea-
son why NLσ models derived for antiferromagnetic ladder
or alternating spin chain [16–19] cannot be straightfor-
wardly applied to the present cases: they are not built
upon the same semiclassical configurations. Note that
since the measure element dx is a two-spin block, it is
equal to a. The Berry phases of the spins are of the form∫

dtdxδn ·n∧∂tn, where δn is the spatial variation of the
field n, and give

Sb =
∫

dt
dx
a
s(4l + 2as∂xΦ) · Φ ∧ ∂tΦ. (2.5)

Since we sum up the contributions for a double two-spin
block, we must divide the whole sum by a factor 2. We
end up with

S=
∫

dxdt
[
−2(1+γ)∆2−2l2−2s∆ · ∂xΦ−

1
2
s2(∂xΦ)2

]
+
∫

dxdt
[
s2(∂xΦ) · Φ ∧ ∂tΦ+ 2sl · Φ ∧ ∂tΦ

]
, (2.6)

where we have set a = 1 for commodity. We recover a spin-
2s topological θ-term with θ = 4πs. As a consequence,
the topological term does not contribute, so that the spin
chain is likely to be gapped.

We next integrate over the fluctuation fields, that is to
say l and ∆. We then obtain the NLσM action

S =
∫

dtdx
[

1
2

(∂tΦ)2 − 1
2
s2 γ

1 + γ
(∂xΦ)2

]
. (2.7)

The standard parameters of this NLσM are the coupling
constant g and the velocity c given by

g =
1
s

√
1 + γ

γ
and c = s

√
γ

1 + γ
· (2.8)

Note that c perfectly matches the velocity v we found for
the classical spin waves. When we make γ goes to infinity
the coupling constant g goes to 1/s and the velocity goes
to s. These are the expected parameters for the 2s-NLσM.
More precisely, the Hida’s chain is build up of spin one half
so that for s = 1/2 g goes to 2 and c to 1/2 in units of
the antiferromagnetic exchange coupling. Those are the
NLσM parameters of a spin-1 chain of exchange JAF/4.
This matches the limit found by Hida for the alternating
chain, which we have recalled previously. Hence that in
this limit, our NLσM is consistent with Hida’s argument.

2.2 The gap formula

To evaluate the spin gap, we compute the mass gener-
ated by the NLσM in the limiting case of a large number
of components for the field Φ(N → ∞). In that limit a
closed expression can be obtained for it, thanks to the
large N saddle-point approximation [22]. It leads to a dy-
namically generated mass, which is implicitly given by a
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saddle point equation. Once one takes into account renor-
malization group corrections (effectively replacing N with
N − 2), and makes N = 3, one gets:∫

dk
2π

dω
2π

1
c
gk

2 + 1
gcω

2 +m2
= 1. (2.9)

At this point we must be cautious not to resort straight-
forwardly to the standard result for the mass. In the limit
γ goes to 0, the chain is totally dimerized and the veloc-
ity c goes to 0. Because of this unusual feature, and also
because we wish to derive results valid for a large range
of γ, we will not resort to a radial cut-off in the Euclidean
space-time of the NLσM. Rather we will first integrate on
frequencies, then integrate on the momenta, with a large-
momenta cut-off Λ. So that instead of the usual circular
domain, we integrate over a strip in the plane (k, ω) along
the ω-axis. The reason for this is that when γ goes to 0, the
prefactor cg−1 of k2 goes also to zero whereas the prefac-
tor (cg)−1 of ω2 remains constant so that large frequencies
are more and more relevant and must not be cut off. In
the process (which actually corresponds to the decoupling
of dimers), we lost the space dimension of space-time.

The first integration is over ω and gives

g

∫ Λ

−Λ

dk
4π

1√
k2 + g

cm
2

= 1. (2.10)

Then integrating over k we can extract the mass of the
NLσM

m =
√
c

g

Λ

sinh(2πs
√

γ
1+γ )

· (2.11)

In the standard derivation of the mass generated by the
NLσM (see for example [23]) one would exchange the func-
tion hyperbolic sine for the function exponential. Indeed,
in order for this computation to make sense we must have√
gc−1m� Λ. Since in the NLσM related to the spin-2s

chain,
√
gc−1 is finite, the (then meaningless) hyperbolic

sine function can be replaced with the exponential func-
tion. Yet for our alternating chain, it can’t be done since
in the limit γ goes to 0 the argument of the function van-
ishes. Hence to encompass the full range of γ we must
retain the hyperbolic sine function.

Now we can turn to the energy gap ∆2s =
√
gcm.

Whatever the spin magnitude s, the gap of an antiferro-
magnetic pair of spins is equal to the gap between the
triplet state and the singlet, i.e. JAF. Hence when γ → 0,
we can determine that ∆2s goes to Λ/(2π). This statement
allows us to determine the cut-off which appears to be 2π
(actually 2π/a but we set a = 1). Therefore we can write:

∆2s =
2πs
√

γ
1+γ

sinh(2πs
√

γ
1+γ )

· (2.12)

We have obtained a self-contained, estimate of the chain
gap for the spin magnitude s. For the spin-1 chain we

1

ρ

δ

Fig. 2. A spin ladder with diagonal couplings δ. The unit block
to construct a NLσM contains again four spins.

obtain ∆1 = 4π/ sinhπ, which is 1.08 far from the nu-
merically [24] known 0.41. We expect a better result for
the spin-2 chain, closer to the “large spin limit” where
the saddle point approximation is accurate. We obtain
∆2 = 8π/ sinh 2π, which is 0.094 fairly close to the nu-
merically [25] known value of 0.085. As for the correlation
lengths, we obtain ξ1 ∼ 2 to compare with the numerically
known ξ1 ∼ 6 whereas we obtained ξ2 ∼ 43 to compare
with the numerical value ξ2 ∼ 49.

The figures labeled 3 and 4 are drawings of the curves
of the spin gap w.r.t. −γ in the range γ ∈ [0, 1] and −1/γ
in the range γ ∈ [1,∞[. We did so in order to compare
our results to Hida’s presentation of his numerical com-
putation [10]. Our result agrees qualitatively on the whole
range of γ including the limiting case γ goes to zero.

To check that our NLσM approach is still valid in the
limit γ goes to zero, we can also compute the correlation
length. It can be read on the saddle point equation: ξ =√

c
g

1
m , or

ξ =
1

2π
sinh

(
2πs
√

γ

1 + γ

)
. (2.13)

We check that the correlation length goes to zero like s
√
γ

when γ → 0, which is expected since at this point the
chain is made of decoupled dimers.

3 An alternating spin ladder

In reference [15], White introduced several mappings that
interpolate smoothly between spin ladders and a spin-1
chain within the Haldane’spin gap phase. Here we treat
one of these mappings. It consists in an antiferromagnetic
spin ladder with an additional diagonal bond in every pla-
quette formed by legs and rungs (see Fig. 2). The ex-
change coupling associated to this bond is ferromagnetic
(we will denote it as D) and does not introduce any frus-
tration in the ladder. The Hamiltonian is given by

H = J
∑

n;a=1,2

SanSan+1 +K
∑
n

S1
nS2

n +D
∑
n

S1
nS2

n+1

(3.1)

where exchange couplings J and K are chosen positive,
whileD is negative. When D goes to 0 we recover the usual
antiferromagnetic spin ladder. Whereas in the limit −D
goes to infinity, the pairs of ferromagnetically bounded
spin are in a triplet state. The effective Hamiltonian
can then be expanded by rotational invariance in terms
of spin-1 couplings. The effective antiferromagnetic cou-
pling constant is then evaluated on any matrix element
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−1.0 −0.8 −0.6 −0.4 −0.2 0.0
−γ

0.40

0.60

0.80

1.00

∆

Fig. 3. The gap of the alternating chain as a function of γ.
The point with decoupled dimers is on the right.

of the Hamiltonian and gives Jeff = (2J + K)/4. So this
limit corresponds to an antiferromagnetic spin-1 chain.
Since in the process, the ladder remains in the Haldane
gapped phase, we may apply our scheme to obtain an es-
timate of the gap as a function of the diagonal coupling D.

3.1 Effective NLσM

The microscopic pattern of the ladder is composed of the
four spins S1

2i,S
2
2i,S

1
2i+1, and S2

2i+1 forming a square and,
apart from the additional diagonal bond, three bonds: one
on each leg, and the last one on one of the two rungs
closing the square (see Fig. 2). As for the Hida’s chain
case calculations are done on a doubled cell.

Possible candidates to spin pairs forming a NLσM are
the nearest neighbours on the same leg. Pairs of site linked
by a rung contribute to the same NLσM. Then, we will
need only one extra fluctuation field to describe of fluctu-
ating paths inside the elementary cell, before going to the
continuous limit. Accordingly the coherent states fields are
decomposed as:

n1
2i = l2i − sΦ2i + a∆2i

n2
2i = l2i − sΦ2i + a∆2i

n1
2i+1 = l2i+1 + sΦ2i+1 − a∆2i+1

n2
2i+1 = l2i+1 + sΦ2i+1 − a∆2i+1

(3.2)

In the following we set J = 1, K = ρ and D = −δ so
that the coupling constants are expressed in units of the
longitudinal antiferromagnetic coupling J . One can then
expand the coupling terms in the action, which yields:

Sc =
∫

dt
dx
a

[
−4a2(ρ+ δ)∆2 − 4(2 + ρ)l2

+4a2δs∂xΦ ·∆− a2(ρ+ δ)s2(∂xΦ)2
]

(3.3)

with the same care for the ferromagnetic bonds as was
done previously. Like for the Hida’s chain the measure
element dx is a two-spin block and is equal to a. The Berry

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
−1/γ

0.20

0.30

0.40

0.50

∆

Fig. 4. Same as preceding figure but the S = 1 chain is recov-
ered on the right for 1/γ = 0.

phases of the spins are of the form
∫

dtdxδn ·n∧ ∂tn and
give

Sb =
∫

dt
dx
a

2sl · Φ ∧ ∂tΦ. (3.4)

Since we sum up the contributions for a double two-spin
block, we must divide the whole sum by 2. We end up
with:

S =
∫

dxdt
[
−2(2 + ρ)l2 − 2(ρ+ δ)∆2 − 2s∆ · ∂xΦ

−1
2
s2(2 + δ)(∂xΦ)2

]
+
∫

dxdt [2lsΦ ∧ ∂tΦ] (3.5)

where we have set a = 1. We next integrate over the fluc-
tuation fields, that is to l and ∆. So that we finally obtain
the NLσM action

S =
∫

dtdx
[

1
2 + ρ

(∂tΦ)2 − 1
2
s2(2 +

δρ

δ + ρ
)(∂xΦ)2

]
.

(3.6)

The standard parameter of this NLσM are

g =
1
s

√
2 + ρ

2 + δρ
δ+ρ

and c = s

√
(2 + ρ)

(
2 +

δρ

δ + ρ

)
.

(3.7)

Now in order to stick to White’s notations, we set ρ = 1
to get:

g =
1
s

√
3(1 + δ)
2 + 3δ

c =
s

2

√
3(2 + 3δ)

1 + δ
· (3.8)

These are the coupling and the velocity of the effective
NLσM.

3.2 Gap evaluation

A line of reasoning similar to the previous treatment can
be applied to this NLσM. Contrary to the Hida’s chain
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0.0 0.2 0.4 0.6 0.8 1.0
1−2/π.ΑΤΑΝ(δ)

0.30

0.35

0.40

0.45

∆

Fig. 5. The gap of the spin ladder with diagonal couplings as
a function of 1− 2/π arctan(δ).

case, it is not meaningful to retain the hyperbolic sine
function, since it is not more precise than the standard
form for the gap. With the previously computed coupling
constant g and velocity c, we obtain:

∆s
L = Λ

s

2

√
3(2 + 3δ)

1 + δ
exp

(
−2πs

√
2 + 3δ

3(1 + δ)

)
. (3.9)

Since when δ →∞, we should recover 3/4 of the gap ∆C

of the spin-1 chain, we can rewrite it as:

∆s
L

3
4∆

s
C

=

√
2 + 3δ

3(1 + δ)
exp

[
2πs

(
1−

√
2 + 3δ

3(1 + δ)

)]
.

(3.10)

Hence we can relate the spin gap of the antiferromagnetic
spin-1 chain to the spin gap of the antiferromagnetic two-
leg spin 1/2 ladder by the formula:

∆L

∆C
=

√
3
8

exp

[
π

(
1−

√
2
3

)]
. (3.11)

With the value ∆C ' 0.41, we obtain the estimate
∆L ' 0.45, close to the known [26] value 0.50. In
Figure 5, we have drawn the curve of the normalized spin
gap ∆L/(3/4∆C) w.r.t. 1− 2/π arctan δ. We can compare
the curve with data from White [15]. Not only does our re-
sult agree qualitatively, but it is also quantitatively quite
good.

4 Conclusion

We have constructed non-linear sigma models appropri-
ate to the description of the properties of some general-
ized spin chains including ferromagnetic exchanges. In the
case of the alternating ferro-antiferromagnetic spin chain,
our treatment reproduces correctly the smooth crossover
from decoupled dimers to the Haldane phase. This ap-
proach may be of relevance to the study of the compound
CuNb2O6 which is such an alternating chain and has a
spin gap [27].

We have also treated a ladder including ferro bonds so
that the Haldane phase can be reached. Here again there
is good agreement with numerical data.

We thank A.V. Chubukov for useful discussions and collabo-
ration at an early stage of this work.
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659 (1986); M. Takahashi, Phys. Rev. Lett. 62, 2313
(1989); O. Golinelli, Th. Jolicoeur, R. Lacaze, Phys. Rev.
B 50, 3037 (1994).

4. H.J. Schulz, Phys. Rev. B 34, 6372 (1986).
5. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev.

Lett. 59, 799 (1987).
6. D.G. Shelton, A.M. Tsvelik, A.A. Nersesyan, Phys. Rev.

B 53, 8521 (1996).
7. M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989).
8. M. Oshikawa, J. Phys. Cond. Matter 4, 7469-7488 (1992).
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